Next Meeting, January 22.
The next meeting will be held on Sunday January 22 at the Citizen Building on Baxter Road, commencing at 1:30 pm (Doors open 1:0 pm)
The program will feature a talk by Bryan Hollebone entitled "The Standardizing of Canadian Time."
There will also be the usual Mart and Display tables for which we request members to bring along any horological items which they have for sale or display. Don't forget we also encourage members to talk about the items which they bring along - regardless of how short, mundane or inexpert you think your talk may be, be assured that the other members are eager to hear from you. The NAWCC slide show No. 114 "So you Want to Date a Clock" by Varne Kimmick will also be shown.

1995 Chapter Schedule
Sunday Jan. 22. Sunday Mar. 26
Sunday May 28 Sunday Sept. 24
Sunday Nov. 26

Thanks to the Nepean Museum
just two days before our Nov. 27th meeting, we were informed that the room at the Citizen Building would not be available. Cancellation of the meeting would have been particularly unfortunate, as Gordon Fairbairn of the Canadian Conservation Institute had agreed to be our guest speaker, and we knew his talk would command a lot of interest. Fortunately the very friendly and helpful staff at the Nepean Museum came to our rescue and immediately granted us full and unrestricted use of their meeting room in the museum.

Thanks to the prompt response from the good people at the museum, who also made their Television and VCR equipment available to us, the meeting went without a hitch, and we would like to express our most grateful thanks to Dan Hofman curator of the museum, and his staff, for their unconditional help and assistance. We hope that the friendly association which has been established between our Chapter and the Nepean museum will continue.

The Bytown Times is published 5 times a year by the Ottawa Chapter 111, National Association of Watch and Clock Collectors, 14 Kinnear Street, Ottawa, Ont., K1Y 3R4. Telephone (613) 728-1242.
Dan Hudson, President.
Bill Eastwood, Vice President.
Ken Owen, Secretary.
John Blakey, Treasurer.
Current Past President: Ben Roberts.
Peter Bomford, Editor, Bytown Times.
Allan Symons, Program Director.
The Chapter meets five times a year on the fourth Sunday of the months of Jan., March, May, Sept., and Nov., at the Citizen Bldg. 1101 Baxter Road, Ottawa at 1pm. Annual dues $16. Membership in the NAWCC is obligatory. Association dues: U.S. $32.

Last Meeting, Nov. 27
Just before our last meeting we were informed that the room we normally use at the Citizen Building would not be available to us. On very short notice we were able to obtain facilities at the Nepean Museum on Rowley Avenue, and our only difficulty proved to be letting everyone know of the change of venue in the short time available. We apologize to any members who were not adequately informed.

President Dan Hudson opened the meeting by introducing and welcoming two new members, Jim Armstrong and Jim Ronson. Jane Varkaris mentioned that she had brought along typed addendums to her book “Early Canadian Timekeepers”, and Alan Symons spoke about suggestions regarding publicity and advertising at our recent Open House.

Bill Westbrook spoke about the ongoing planning for the exhibit and public seminars at the Nepean Library during the month of January, which he is organizing on behalf of the Chapter.
The rest of the meeting was taken up by a very interesting talk by guest speaker Gordon Fairbairn, Senior Conservator - Canadian Conservation Institute, who gave a detailed account of the restoration of a Boule work French clock case.

After showing a video which described the Institute and it’s work, Gordon proceeded to explain the restoration work carried out on the clock which the owners, the Royal Ontario Museum, had described as probably the oldest and most valuable clock in Canada.
The restoration work was carried out over a period...
The following article is reproduced from the Sept. 1990 issue of the "Bulletin", published by the Canadian Conservation Institute, Department of Communications. It is included here to provide an adjunct to Gordon Fairbairn's talk at the November meeting.

Treatment of a Boullle Work Bracket Clock: A Progress Report

by Laura Nagora, Gordon Fairbairn and Janice Manuel

In December of 1987, a crate containing a bracket clock arrived in the Furniture and Wooden Objects Section of CCI. This clock, which is owned by the Royal Ontario Museum, is attributed to André Charles Boullle (1642-1732) who perfected the technique of brass and tortoiseshell inlay. Although the clock carcass is simple in its outline, the decorative ormolu mounts and inlay designs reflect the elaborate baroque style popular during the reign of Louis XIV. It is considered by Peter Kaelgren, Curatorial Fellow in the European Department of the Royal Ontario Museum, to be one of the most important early clocks and pieces of Boullle furniture in Canada. When this unusual artifact arrived at CCI, it was difficult to believe that the case was originally covered with ornate tortoiseshell and brass inlay, and ormolu mounts. Much of the inlay was loose, detached or missing. Accompanying the case were a number of envelopes containing numerous small sections of inlay, and boxes containing smaller structural elements, brass trimmings and small ormolu pieces. Originally there would have been a bracket on which the clock rested, but the wooden framework is missing. All that remains are the heavy ormolu mounts, which we now believe were part of the bracket. Examination revealed some puzzling features. Close inspection of the inlay confirmed that some areas had undergone previous restoration. The colour of the brass, and absence of engraving on some brass pieces and the difference in colour and markings of the tortoiseshell are characteristics of the restored areas. The back panel had undergone the most extensive restoration. Missing inlay had been reproduced to complete the designs, and a layer of varnish applied. The varnish had darkened and obscured the beauty of the inlay.

After examining the ormolu mounts, we noticed that the style and motifs of several of the mounts were different from those on the rest of the pieces. By comparing the nail holes on the mounts to those on the carcass, we discovered that the questionable pieces could not belong on the clock case. These mounts may be part of the missing bracket. The conservation project promised to be interesting and challenging. Due to its complexity, it also offered possibilities as a useful training project. It is relatively rare to have the opportunity to work on a complex artifact of composite materials that is in such poor condition. The problems we faced were like stepping stones. One problem had to be taken care of before the next could be approached. The first step was to piece together all detached structural and decorative elements. The clock case is an assemblage of three layers: the wooden carcass, the inlay of tortoiseshell and brass, and the ormolu mounts. Once the placement of these pieces was established, the next step was to find out if all the necessary inlay was present. If not, the missing areas would need to be carefully documented and reproduced. The decision to reproduce the missing areas of inlay created the next problem: how to adhere the inlay to the carcass - in particular, what adhesive to use. The inlay designs found on a Boullle work clock are usually symmetrical on the left and right sides of the clock case. The design is described as a mirror image, meaning that from a centre-line on the clock case, the design on the left side was identical to that on the right side, but in reverse. Fortunately, the sections of intact inlay provided sufficient information to enable the completion of their counterparts. Each piece of inlay design was copied onto tracing paper and outlined using different colours to identify whether it was original, a previous restoration or a CCI reproduction. These tracings then acted as patterns to reproduce the missing sections of inlay. The difficulty was in finding a technique that could duplicate the flow of quality of the designs. Before an inlay design could be cut for the clock, the raw tortoiseshell had to be prepared. First, the shell plates were removed from the case by soaking the whole case in hot water. A hammer and a large spatula were used to pry the plates, which were then boiled in water to soften them further, dried and pressed flat for at least 12 hours. To match the thickness of the original tortoiseshell inlay,
both glass and metal scrapers were used to remove excess material from the plates. Different grades of sandpaper removed any marks left by the scrapers. The shell veneers were then dyed to obtain a close colour match with the original material. We used the original technique for producing Boulle work designs to reproduce the missing sections of inlay. The extant original inlay sections were adhered onto tracing paper. A sheet of prepared tortoiseshell was then adhered to the underside of the paper, followed by a sheet of brass adhered underneath the shell, creating a four-layer "sandwich." The missing pieces were then created by carefully cutting through the lower three layers using a fret saw and fine jeweller's saw blades. The reproduced sections of tortoiseshell and brass were used to fill in the missing design areas. The identifying characteristics of the replacement tortoiseshell were its different colour and markings. To identify the replacement brass designs, they were left without the surface engraving found on the original sections. The colour of this replacement brass was closer to that of the original material and therefore identifiable from the previous restoration brass, which also was not engraved. Simultaneously, research was being carried out to find a suitable adhesive to adhere the inlay to the carcass. Originally, glues were used with additives such as garlic juice and urine to give the glue increased elasticity and improved adhesion to the metal elements. The environmental conditions, particularly low humidity, of North American museums have created problems for Boulle pieces in these collections. In many instances, the inlays have either partially or completely detached because of the embrittlement of the old adhesive. In some recent restorations of Boulle clocks, epoxies have been used in an attempt to overcome this problem. Epoxy was not used for this project because of its irreversibility. Animal and fish glues were tested under radical relative humidity fluctuations, using glycerine to replace the traditional plasticizers of garlic juice and urine. These tests indicated that starch paste with 5% glycerin provided a strong, flexible bond. Today, after many hours of work, most of the puzzle is solved and the missing design sections have been recreated. Based on this restoration, the original design of the clock is more fully determined. The clock case is constructed of brown oak, crowned by a pediment on which sits an ormolu female figure. The inlay designs are completely symmetrical and depict entwined scrollwork and foliage, birds and child-like faces. The baroque style ormolu mounts cover much of the clock surface. The use of windows, also a prominent feature of the baroque style, allow better viewing of the highly decorative back panel. The clock is inscribed "De'Y Paris" on the back. Its face is engraved brass with Roman numerals on individual enamelled plates. The pendulum has a sun-god motif, a symbol of Louis XIV. At this stage of the project, most of the inlay has been reconstructed and the design sections shaped by heating and clamping to conform to the various curved sections of the carcass. The next stages will involve correcting the differing thickness of the tortoiseshell and the brass inlay, realigning lose structural elements and adhering all the inlay sections to the carcass. The final step will be to re-attach the ormolu mounts. One other major decision remains: whether or not to recreate a bracket. Although no elements of the bracket carcass remain, we feel confident that a fairly accurate reconstruction can be made based on the curvature of the remaining ormolu mounts and on evidence from other Boulle clocks with intact brackets. Treatment of this complex artifact appears simple when summarized here. What is not apparent, however, are the many, many hours of work put into steps such as literature searches, adhesive testing, familiarization with the use and manipulation of tortoiseshell, and the annealing of modern brass sheet to render it suitable for cutting and forming, before conservation could begin. Once the results of all these operations are incorporated into completing the project, we believe that the information will be of great value to conservators involved in future treatments of similar artifacts.
A Campaign to Protect You in Buying Your Watch

RALPH WALDO EMERSON, speaking in one of his essays of a distinguished man, said: "He is put together like a Waltham Watch."

This remarkable tribute to Waltham greatness is the result of the genius of many men whose inventive faculties have been concentrated for nearly three-quarters of a century to make it the wonderful time-keeping device it is.

The buying of a watch is an investment in time-keeping. And time is the most valuable possession of man.

You purchase a watch for one thing—to keep correct time for you—to tell it to you with dependability at any moment of the day or night.

A good watch, therefore, must have something more than good looks—it must have good "works."

Millions of people imagine that the "best" watch is made abroad—or, at any rate, that its works are imported from there.

Yet, at the great Expositions, the watches of the world's other leading manufacturers have invariably been defeated by Waltham.

In a series of advertisements we are going to show Americans that there is a watch built in the United States whose time-keeping mechanism is more trustworthy than those of foreign make—

A watch that is easily and reasonably repaired because its parts are standardized—

A watch that represents American leadership in mechanical skill—

A watch that has revolutionized the art of watch making and assured accurate and dependable time-keeping.

We are going to take you through the "works" of a Waltham—lay bare those hidden superiorities which have led the horological experts of the greatest nations to choose Waltham as the watch for the use of their government railroads.

When you have finished reading these advertisements, which will appear regularly in the leading magazines, you will walk up to your jeweler's counter and demand the watch you want—because you will know what it is built and why it is superior to the foreign watch.

Look for these advertisements. Read them.

WALTHAM
THE WORLD'S WATCH OVER TIME

Fake Rolexes

Some indications, according to the Associated Press, that a watch is an imitation Rolex: the second hand makes a tick-tick-tick motion instead of sweeping; it is made of lighter, hollow metal (the genuine article is made of high grade steel); it's crystal is made of plastic, not synthetic sapphire; it is available for as little as $10.

Bakelite

The European craze for colour was instigated by America's fondness for Bakelite, a synthetic material invented in New York in 1907. Bakelite was produced in solid or translucent colours. It was extremely popular as a medium for jewellery, clock and radio cases and flatware in the 1930's.